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About the interest for networks

Fundamental tools in various fields : molecular biology, sociology, ecology
...

In Ecology

• Vertices : species (plants or
animals)

• Edges : predation, pollination,
competition...

• Example of objective :
characterizing the structure of
the network because it
conditions their robustness to
the disappearance of species.

[Pocock et al., 2012]
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About the interest for networks

In sociology

• Vertices : individuals or
organizations

• Edges : advice, competition, ...
• Example of objective :

characterizing the role of
individuals in the network, link
their role to covariates
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Statistical learning

• Qualify the role of nodes : centrality
• Resume the network into a “small“ number of indicators, give a

mesoscopic view of its organisation, a summary image.
• Highlight/stress the variability of connection behavior : all the nodes

do not play the same role.
• Identify communities
• Huge literature

Possible approaches
• Classical metrics detecting pre-specified patterns (e.g. modularity,

centrality, nestedness...)
• Machine learning tools : autoencoder
• Probabilistic latent variable models : represent nodes in a

smaller space : . In particular Stochastic Block Models
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Adjacency matrix Representation

• For any pair of nodes (i , j) (individuals for instance),

Yij =
{

1 if there is an interaction between i and j
0 otherwise.

• Sometimes Yij ∈ R or N, weighted graph
• Square matrix, symetric or not
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A first probabilistic model

• Context : our adjacency Y is the realization of a stochastic process.
• Aim : Propose a stochastic process is able to mimic heterogeneity in

the connections.

Erdos Renyi model
(if Yij ∈ {0, 1})

∀(i , j), Yij ∼ Bern(p)

• Homogeneity of the connections : all the nodes play the same role
• No hubs, no community, no nestedness
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Stochastic Block Model

• Aim : introduce heterogeneity in the connections
• Tool : introduce blocks of nodes gathering entities that interact

roughly similarly in the network
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Stochastic Block Model [Snijders, 2001]

Let (Yij) be an n adjacency matrix

Latent variables
• The nodes i = 1, . . . , n are partitionned into Q clusters
• Zi = q if node i belongs to cluster (block) q
• Zi independant variables

P(Zi = q) = πq

Conditionally to (Zi)i=1,...,n...
(Yij) independant and

Yij |Zi = q,Zj = r ∼ Bern(αqr )
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Stochastic Block Model : illustration

A1 A2

A3

α••

B1
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B5

α••

C1

C2

α••

α••

α••

α••

Parameters
Let n nodes divided into 3 clusters

• {•, •, •} clusters

• π• = P(i ∈ •), i = 1, . . . , n

• α•• = P(i ↔ j|i ∈ •, j ∈ •)

Y ∼ SBMn(Q,π,α)
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SBM : A great generative model

• Generative model : easy to simulate
• Combination of modularity, nestedness, etc...

Hubs Comunities Nested
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Statistical inference

From... to

• Selection of the number of clusters Q for SBM
• Estimation of the parameters θQ = (π,α) for a given number of

clusters Q
• Clustering Ẑ
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Likelihood for SBM

Complete likelihood (Y) et (Z)

`c(Y,Z; θ) = p(Y|Z; α)p(Z; π)
=

∏
i,j

fαZi ,Zj
(Yij)×

∏
i
πZi

=
∏
i,j
α

Yij
Zi ,Zj

(1− αZi ,Zj )1−Yij
∏

i
πZi

Marginal likelihood (Y)

log `(Y; θ) = log
∑
Z∈Z

`c(Y,Z; θ) . (1)
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Marginal likelihood : remark

log `(Y; θ) = log
∑
Z∈Z

`c(Y,Z; θ) .

Remark
Z = {1, . . . ,Q}n ⇒ when Q and n increase, impossible to compute.

Standard tool to maximize the likelihood when latent variables
involved : EM algorithm.
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From EM to variational EM

Standard EM
At iteration (t) :
• Step E : compute

Q(θ|θ(t−1)) = EZ|Y,θ(t−1) [log `c(Y,Z; θ)]

• Step M :
θ(t) = arg max

θ
Q(θ|θ(t−1))

16



Limitations of standard EM

• Step E requires the computation of EZ|Y,θ(t−1) [log `c(Y,Z; θ)]
• However, once conditioned by par Y, the Z are not independent

anymore : complex distribution if Q and n big.
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Variational EM : maximization of a lower bound

Idea : replace the complicated distribution [Z|Y, θ] by a simpler one.

Let RY,τ be any distribution on Z

Central identity

Iθ(RY,τ ) = log `(Y; θ)−KL[RY,τ , p(·|Y; θ)] ≤ log `(Y; θ)
= ERY,τ [log `c(Y,Z; θ)]−

∑
Z
RY,τ (Z) logRY,τ (Z)

= ERY,τ [log `c(Y,Z; θ)] +H (RY,τ (Z))

Note that :

Iθ(RY,τ ) = log `(Y; θ)⇔ RY,τ = p(·|Y; θ)
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Variational EM

• Maximization of log `(Y; θ) w.r.t. θ replaced by maximization of the
lower bound Iθ(RY,τ ) w.r.t. τ and θ.

• Benefit : we choose RY,τ such that the maximization calculus can
be done explicitly

• In our case : mean field approximation : neglect dependencies
between the (Zi )

PRY,τ (Zi = q) = τiq
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Variational EM

Algorithm
At iteration (t), given the current value (θ(t−1),RY,τ (t−1)),
• Step 1 Maximization w.r.t. τ

τ (t) = arg max
τ∈T
Iθ(t−1)(RY,τ )

= arg max
τ∈T

ERY,τ

[
log `c(Y,Z; θ(t−1))

]
+H (RY,τ (Z))

= arg max
τ∈T

log `(Y; θ(t−1))−KL[RY,τ , p(·|Y; θ(t−1))]

= arg min
τ∈T

KL[RY,τ , p(·|Y; θ(t−1))]
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Variational EM

Algorithm
• Step 2 Maximization w.r.t. θ

θ(t) = arg max
θ
Iθ(RY,τ (t))

= arg max
θ

ERY,τ(t) [log `c(Y,Z; θ)] +H
(
RY,τ (t)(Z)

)
= arg max

θ
ERY,τ(t) [log `c(Y,Z; θ)]

In practice

• Really fast
• Strongly depends on the initial values
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A penalized likelihood criterion

• Selection of the number of clusters Q
• Integrated Classification Likelihood (ICL) [Biernacki et al., 2000]

ICL(MK) = log `c(Y, Ẑ; θ̂Q)− pen(MK) (2)
where

Ẑi = arg max
q∈{1,...,Q}

τ̂iq . (3)

• Integrated Complete Likelihood (ICL)

ICL(MK) = Ep(·|Y,θ̂Q )[log `c(Y, Ẑ; θ̂Q)]− pen(MK) (4)
where

pen(MK) = 1
2

(Q − 1) log(n)︸ ︷︷ ︸
Clust.

+ Q2 log(n2 − n)︸ ︷︷ ︸
Conn.
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Advantages of ICL

• its capacity to outline the clustering structure in networks
• Involves a trade-off between goodness of fit and model complexity
• ICL values : goodness of fit AND clustering sharpness.

ICL versus BIC
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Implementation and theorical guaranties

• Implementation
• Going trough the models and initiate VEM at the same time
• Stepwise procedure
• R-packages : blockmodels and sbm

https://grosssbm.github.io/sbm/

• Theorical properties
• Identifiability and a first consistency result by [Celisse et al., 2012]
• Consistency of the posterior distribution of the latent variables

[Mariadassou and Matias, 2015]
• Consistency and properties of the variational estimators

[Bickel et al., 2013]

Extension to bipartite and multipartite

24
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Application on a Chilean foodweb
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• Intertidal zone of the Chilean
Pacific coast

• 106 animal or plant species,
sessile or mobile

• 1362 trophic interactions
• [Kéfi et al., 2016]
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Application on Chilean

7 blocs

B7

B1

B3

B6

B2

B5B4
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Application on Chilean foodweb

• Schematic representation (inspired by [Picard et al., 2009])
• Left : each vertex is a block and the thickness of the edges

represents the probability of interactions between each block (above
the 0.1 threshold, for clarity)

• Right : type of species representative of each block. From top to
bottom : anemone and gull (B1), chiton (B2), Fissurella (B3),
Balanus and mussel (B4), crab (B5), Laminariale (B6) and red algae
(B7)
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Studying the blocks

• B1 :
• gather the "super-predators" (top of the trophic chain) which have

no predators except some rare trophic links between them
• wide taxonomic variability, including diverse species such as the

anemone or the gull

• ...
• B6 and B7 contain basal algal species, including brown algae and

red algae respectively, and which are resources for various mollusks.
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Finally

• SBM allows to summarize the complexity induced by the observation
of more than a thousand interactions.

• The interpretation of its parameters (the probabilities of interactions
between each block) allows a synthetic description of the ecosystem,

• Interpretation of the blocks with exogenous information such as
taxonomy and ecological traits.

• To go really further : use this representation to compute a
robustness to species disappearance [Chabert-Liddell et al., 2022]
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Other emission distribution

• For count data
Yij |Zi = k,Zj = ` ∼ F(αk`)

where F can be a Poisson, a zero inflated Poisson, a negative
binomial distribution [Mariadassou et al., 2010]

• If I have covariates on the each pair of nodes ?

Yij |Zi = k,Zi j = ` ∼ F(αkl + xijβ)

The blocks explain the residual structure once the covariates avec
been taken into account.

• See the vignette (fungus - tree) of the R Package sbm
• Take into account the way the network was sampled (snow ball

effect, etc...) : missSBM + [Tabouy et al., 2020]
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Bipartite Networks

If the nodes are divided into two
groups

• Plant-pollinators
• Fungi-trees
• Drugs - Side effects
• Crop Species- Farmers

Interactions only between elements
of the two groups.
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Plants/Pollinators

From ....
Data from [Fisogni et al., 2020]
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Plants/Pollinators

Introduce blocks of nodes of each type : biclustering

Yij |Ui = k,Vj = ` ∼ F(αk`)
P(Ui = k) = πU

k

P(Vi = `) = πV
`
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Plants/Pollinators

... to
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Multipartite networks

• Divided into 4 functional groups : plants, pollinators, ants,
seed-dispersing birds

• Edge between plant i and animal j = an individual of animal specie
j has been observed at least once in interaction (pollination,
protection, eating seeds) with a plant of specie i .

• Observations made along the Mexican Coast by Wesley Dattilo
(INECOL, Xalapa, Mexico)
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Dattilo’s multipartite network

Multi-interaction6network

Protective6ant-plant6network

Pollination6network

Seed-dispersal6network

Plants

Pollinators

Protective6ants

Seed-dispersing6birds

n=6746unique
interactions

n=6276unique
interactions

n=6216unique
interactions

n=6136plants
shared

n=666plants
shared

B)

A)

Page 27 of 29

http://mc.manuscriptcentral.com/prsb

Submitted to Proceedings of the Royal Society B: For Review Only
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Multipartite matrix in ecology

[Bar-Hen et al., 2018] 36



Results : a mesoscopic view of the network

With our model and model selection
(a few minutes)

• 7 blocks of plants
• 2 blocks of flower visitors

(pollinators)
• 1 block of birds
• 2 blocks of ants
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Re-ordered matrix
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Multiplex networks

I want to study mutualism and competition (or advices and competition
at the same time) at the same time ?

Multiplex network [Barbillon et al., 2016][Kéfi et al., 2016]

Test dependency between the two levels
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Other extensions

In the recent years, interest for analyzing jointly a collection of networks
(or multilayer networks). See [Bianconi, 2018, Pilosof et al., 2017]

• Time (or space) -varying networks : same entities observed
interacting along time [Matias and Miele, 2017]

• Multilevel networks : organizations and individuals
[Chabert-Liddell et al., 2021]
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Package sbm

Comprehensive R package available on CRAN and Github gathering
several block models and there in references with vignettes.

https://grosssbm.github.io/sbm/

Developed by J. Chiquet, P. Barbillon, S. Donnet, J.B. Léger, I. Sanchez,
etc...

41
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Collection of networks : consensus in the structure

Objectives
Looking for commun patterns in networks involving non-common sets of
nodes

Applications

• Compare the structure of ecological networks
• Compare sociological networks : advices between lawyers, researchers

or priests
43



Three foodwebs

• Pine-firest stream food webs issued from Maine, North-Caroline and
Nez-Zealand [Thompson and Townsend, 2003]

• Involve respectively 105, 58 and 71 species.
• Yij = 1 if i is eaten by j . Directed relation

• Look for similarities and differences between network structures.
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Separate SBMs

• Fitted SBM on each separately
• Reordered the matrices following the blocks
• Label the blocks following the average out-degrees order
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Separate SBMs

• Two bottom groups in each matrix are basal species : eaten by many
species and not eating anybody.

• • Martins : has a separation into 5 blocks, the third one is a medium
trophic level, which preys on basal species and is highly preyed by
species of the 1st block.

• Cooper. Higher trophic levels grouped together in the same block
(lack of statistical power).

• Herlzier : higher trophic level is separated into 2 blocks determined
on how much they prey on the less preyed basal block. 46



Towards a joint modeling of the networks

• Need to model jointly the networks
• Identify the groups playing the same role through out the networks,

with an unsupervised strategy.
• Let (Ym)m=1,...,M denote the collection of networks each involving

nm nodes.
• (Ym) independent.
•

Ym ∼ SBMnm (Qm,πm,αm)

• Conditions on the parameters (πm)m=1,...,M and (αm)m=1,...,M

47



First naive model

iid-colSBM

Ym ∼ SBMnm (Q,π,α)

with πq > 0 ∀q ∈ {1, . . . ,Q} and
∑Q

q=1 πq = 1.

• (Q − 1) + Q2 unknown parameters, M clustering
• Too strict to be applied to the Thomson’s dataset
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A first relaxed model : π-colSBM

Same structure of connection α, specific proportions of blocks in each
network

π-colSBM

Ym ∼ SBMnm (Q,πm,α)

On the block proportions

• πm
q ≥ 0

• If πm
q = 0 then block q is not represented in network m
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π-colSBM : different proportions

M = 2 networks

α =

α11 α12 α13
α12 α22 α23
α13 α23 α33

 π1 = [.25, .25, .50]
π2 = [.20, .50, .30]

.

• Same connection structure between blocks
• Different block proportions
• 2× (3− 1) + 32 = 15 parameters.
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π-colSBM : nested structures

πm
q ≥ 0

α =

α11 α12 α13
α12 α22 α23
α13 α23 α33

 π1 = [.25, .25, .50]
π2 = [.40, 0 , .60]

.

• Blocks 1 and 3 are represented in the two networks while block 2
only exists in network 1.

• 3− 1 + 3− 2 + 32 = 14 parameters
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π-colSBM : partially nested structures

α =

α11 α12 α13
α21 α22 ·
α31 · α33

 π1 = [.25, .75, 0 ]
π2 = [.40, 0 , .60]

.

• The two networks share block 1 (for instance super predators or
basal species)

• The remaining nodes of each network not equivalent in terms of
connectivity.

• Blocks 2 and 3 never interact because their elements do not belong
to the same network and so α23 and α32 are not required to define
the model.

• (2− 1) + (2− 1) + 7 = 11 parameters.
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Number of parameters

Let S be the support M × Q matrix such that

Smq =
{
1 if πm

q > 0
0 otherwise .

Then,

Nb(π-colSBM) =
M∑

m=1

( Q∑
q=1

Sqm − 1
)

+
Q∑

q,r=1
1(S′S)qr>0
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Varying density model : δ-colSBM

δ-colSBM

Ym ∼ SBMnm (Q,π, δmα)

with πq > 0,

• M networks exhibit similar intra- and inter blocks connectivity
patterns but with proper densities.

• δm be a density parameter, specific to each network. δ1 = 1.
• Mimics differences of effort sampling or abundances
• (Q − 1) + Q2 + (M − 1) parameters.
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Varying density and block proportion model

δπ-colSBM

Ym ∼ SBMnm (Q,πm, δmα)

with πm
q ≥ 0

• Most flexible model
• Nb(π-colSBM) + (M − 1) parameters.
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Summary

M independent networks.

Ym ∼ SBM(Qm,πm,αm)

Model name Block prop. Connexion param. Nb of param.
iid-colSBM πm

q = πq , πq > 0 αm
qr = αqr (Q − 1) + Q2

π-colSBM πm
q , πm

q ≥ 0 αm
qr = αqr ≤ M(Q − 1) + Q2

δ-colSBM πm
q = πq , πq > 0 αm

qr = δmαqr (Q − 1) + Q2 + (M − 1)
δπ-colSBM πm

q , πm
q ≥ 0 αm

qr = δmαqr ≤ M(Q − 1) + Q2 + M − 1
sep-SBM πm

q , πm
q > 0 αm

qr
∑M

m=1(Qm − 1) + Q2
m
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Identifiability

Demonstrated for the most complex SBM, upto label switching of the
blocks and permutation of the networks, under light conditions.

For π-colSBM, let us define Qm = {q ∈ {1, . . . ,Q}|πm
q > 0}.

1. ∀m : nm ≥ 2|Qm|
2. (α · πm)q 6= (α · πm)r for all (q 6= r) ∈ Q2

m

3. ∀q = 1, . . . ,Q, ∃m : q ∈ Qm

4. Each diagonal entry of α is unique
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Inference

VEM algorithm

• Direct extension of VEM previously described for iid-colSBM and
π-colSBM

• Less obvious with δmα : M step not explicit.
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Model selection

ICL can be directly extended for iid-colSBM and the δ-colSBM

ICL(Q) = I(τ̂ , θ̂)− Q − 1
2 log

(∑
m∈M

nm

)

−1
2

(
Q(Q + 1)

2 + ν(δ)
)

log
(∑

m∈M

nm(nm − 1)
2

)
, (5)

where ν(δ) = M − 1 for δcolSBM and 0 otherwise.
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Model selection

• For iid-colSBM and the δ-colSBM
• πm

q possibly null. Asymptotic approximation do not hold
• Each couple (Q,S) defines a model.

ICL(Q,S) = I(τ̂ , θ̂)−
M∑

m=1

|Qm| − 1
2 log(nm)−

1
2

( Q∑
q,r=1

1(S′S)qr>0 + ν(δ)
)

log
( M∑

m=1

nm(nm − 1)
2

)
,(6)

60



Application on the foodwebs

Separate sbm
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Model choice

Model ICL
sepSBM −2080

iid-colSBM −1966
π-colSBM −1982
δ-colSBM −1969
δπ-colSBM −1989

• Reject sepSBM : commun structure in the networks
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iid-colSBM : the prefered model

• Makes 5 blocks
• Block 3 (light green) is a small block of intermediate trophic level

species with some within block predation.
• The higher trophic level is divided into 2 more blocks,

• block 2 (dark green) only preys on the 2 basal blocks
• block 1 (pink) preys on the intermediate block 3 level but only on

the most connected basal species block.
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π-colSBM

• Also 5 blocks.
• There are no empty blocks
• the block proportions are roughly corresponding to the ones of

iid-colSBM .
• Flexibility of the π-colSBM of little use compared to the iid-colSBM

on this collection.
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Conclusion

• The three networks do share a commun structure.
• We can identify the species playing the same role across networks

(ecosytems)
• Other results

• Quality of prediction when missing data.
• Application in sociology : advices between lawyers, researchers or

priests
• Clustering of networks. Application on a database of 80 networks.
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Work in progress

• Develop a wide variety of models
• Very active research field in our group
• Various extensions in progress

• Taking into account the incertitude of reconstruction of the networks
(data from metagenomics)

• Extension to large multilayer networks such as interactome
• Looking for tools to compare networks : plant health submitted to

combination of stress
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To go further : partitionning a collection of networks

• If the networks in a collection do not have the same connectivity
structure, we aim to partition them accordingly.

• Finding a partition G = (Mg )g=1,...,G of {1, . . . ,M}.
such that

∀g ∈ {1, . . . ,G}, ∀m ∈Mg , Ym ∼ SBM(K g ,πm,αg )

networks belonging to the subcollectionMg share the same
mesoscale structure given by π-colSBM.
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Scoring a partition

• To any partition G we associate the following score :

Sc(G) =
G∑

g=1
BIC-L((Ym)m∈Mg , K̂ g ).

• Best partition G is chosen as follows :

G∗ = arg max
G

Sc(G).
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Partition of the networks from the Mangal database

• 67 networks issued from the Mangal database belonging to 33
datasets. [Vissault et al., 2020]

• predation networks which are all directed networks with more than
30 species,

• number of species ranges from 31 to 106 (3395 in total) by network
• Density ranging from .01 to .32 (14934 total predation links).

Aim use our model to propose partition of the networks into group of
networks with common mesoscale structure.
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Partition on the networks from the Mangal database
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Partition on the networks from the Mangal database

Groupe A

• 7 networks and 12 blocks are required to describe this group of
networks

• 5 networks are issued from the same dataset (id : 80).
• These 5 networks populate the 12 blocks, while the other 2 networks

only populate parts of them.
• Average density is about 0.18
• Blocks 1 to 3 represent the higher trophic levels, blocks 4 to 8 the

intermediate ones and block 9 to 12 the lower ones.
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Partition on the networks from the Mangal database

Group B : structure with 8 blocks

• 26 networks with heterogeneous size and density.
• Issued from various datasets
• Most networks populate only parts of the 8 blocks
• Block 4 is represented in only 5 networks where it is either an

intermediate or a bottom trophic level.
• Species from top trophic levels prey on basal species.
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Partition on the networks from the Mangal database

Group C : structure with 7 blocks

• 6 networks with density ranging from .06 to .11.
• All networks are represented in 5 or 6 of the 7 blocks, including the

first three blocks.
• 3 of the 5 networks of dataset 48 (diff. collecting sites).
• Top trophic level divided into 2 blocks, species from those blocks

preying only on intermediate trophic level species.
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Partition on the networks from the Mangal database

Group D : structure with 7 blocks

• 23 networks.
• The 10 networks from dataset 157 (stream food webs from New

Zealand) are divided between groups B and D based on the type of
ecosystem. The data from group B were collected in creeks, while
the one from group D were collected on streams.
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Partition on the networks from the Mangal database

Group E : structure with 7 blocks
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Comments on the ICL versus BIC

Conjecture

BIC(MK) = log `(Y; θ̂,MK)− pen(MK)

with the same penalty

• Under this conjecture

ICL(MK) = BIC(MK) +
∑
Z

p(Z|Y; θ̂K ) log p(Z|Y; θ̂K )

= BIC(MK)−H(p(·|Y; θ̂K ))

• As a consequence, because of the entropy, ICL will encourage
clustering with well-separated groups

•

ÎCL(M) = BIC(M)+
∑
Z
RY(Z, τ̂) logRY,τ̂ (Z)−KL[RY,τ̂ , p(·|Y; θ̂)] .

Back to the presentation 80



About bipartite networks

• Example : plant / pollinators
• Bi-clustering
• Same principle

• K1 blocks of plants, K2 blocks of pollinators
• 2 sets of latent clustering variables (Z plant

i )i=1,...,n1 , (Z
poll
j )j=1,...,n2 ...

• Conditionnally to latent variables : (Yij) independent and

Yij |Z plant
i = k,Z poll

j = ` ∼ Bern(αk`)
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About multipartite networks

• Involving more than two functional groups (Q)
• For instance plants : pollinators, seed-dipersal birds, ants...

• Q-clustering : Q sets of latent clustering variables (Z q
i )i=1,...,nq ...

• Kq blocks in each functional group
• Conditionnally to latent variables : (Y qq′

ij ) independent and

Y qq′
ij |Z

q
i = k,Z q′

j = ` ∼ Bern(αqq′
k` )

• Inference, model selection procedure : adapted
• Package sbm
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