# **Poisson lognormal models for count data** Variational inference, Optimization

J. Chiquet, M. Mariadassou, S. Robin, B. Batardière + others

MIA Paris-Saclay, AgroParisTech, INRAE, Sorbonne Universyty Last update 16 November, 2022

https://pln-team.github.io/PLNmodels

# Outline

- 1. Framework of multivariate Poisson lognormal models
- 2. Optimization with Variational inference
- 3. Properties of the Variational estimators
- 4. A recent extension: Zero-Inflated PLN

Motivations, Framework

# Generic form of data sets

Routinely gathered in ecology/microbiology/genomics

### Data tables

- Abundances: read counts of species/transcripts j in sample i
- <code>Covariates</code>: value of environmental variable k in sample i
- Offsets: sampling effort for species/transcripts j in sample i

### Need frameworks to model *dependencies between counts*

- understand environmental effects

   ~> explanatory models (multivariate regression, classification)
- exhibit patterns of diversity
  - $\rightsquigarrow$  summarize the information (clustering, dimension reduction)
- understand between-species interactions
   ~> 'network' inference (variable/covariance selection)
- correct for technical and confounding effects
   ~> account for covariables and sampling effort

# Models for multivariate count data

### If we were in a Gaussian world...

The <code>general linear model</code> [MKB79] would be appropriate! For each sample  $i=1,\ldots,n$ ,



null covariance  $\Leftrightarrow$  independence  $\rightsquigarrow$  uncorrelated species/transcripts do not interact

This model gives birth to Principal Component Analysis, Discriminant Analysis, Gaussian Graphical Models, Gaussian Mixture models and many others ...

### With count data...

There is no generic model for multivariate counts

- Data transformation (log,  $\sqrt{}$ ) : quick and dirty
- Non-Gaussian multivariate distributions [Ino+17]: do not scale to data dimension yet
- Latent variable models: interaction occur in a latent (unobserved) layer

# The Poisson Lognormal model (PLN)

/ 46

The PLN model [AH89] is a multivariate generalized linear model, where

- the counts  $\mathbf{Y}_i$  are the response variables
- the main effect is due to a linear combination of the covariates  $\mathbf{x}_i$
- a vector of offsets  $\mathbf{o}_i$  can be specified for each sample.

 $\mathbf{Y}_i | \mathbf{Z}_i \sim \mathcal{P}\left( \exp \mathbf{Z}_i 
ight), \qquad \mathbf{Z}_i \sim \mathcal{N}(\mathbf{o}_i + \mathbf{x}_i^{ op} \mathbf{B}, \mathbf{\Sigma}),$ 

The unkwown parameters are

- **B**, the regression parameters
- $\boldsymbol{\Sigma}$ , the variance-covariance matrix

Stacking all individuals together,

- $\mathbf{Y}$  is the n imes p matrix of counts
- ${f X}$  is the n imes d matrix of design
- ${f O}$  is the n imes p matrix of offsets

Properties: over-dispersion, arbitrary-signed covariances

- mean:  $\mathbb{E}(Y_{ij}) = \expig(o_{ij} + \mathbf{x}_i^ op \mathbf{B}_{\cdot j} + \sigma_{jj}/2ig) > 0$
- variance:  $\mathbb{V}(Y_{ij}) = \mathbb{E}(Y_{ij}) + \mathbb{E}(Y_{ij})^2 \left(e^{\sigma_{jj}} 1\right) > \mathbb{E}(Y_{ij})$
- covariance:  $\operatorname{Cov}(Y_{ij},Y_{ik})=\mathbb{E}(Y_{ij})\mathbb{E}(Y_{ik})\left(e^{\sigma_{jk}}-1
  ight).$

# Natural extensions

### Various tasks of multivariate analysis

• Dimension Reduction: rank constraint matrix  $\boldsymbol{\Sigma}$ .

 $\mathbf{Z}_i \sim \mathcal{N}(oldsymbol{\mu}, oldsymbol{\Sigma} = \mathbf{C}\mathbf{C}^ op), \quad \mathbf{C} \in \mathcal{M}_{pk} ext{ with orthogonal columns.}$ 

• Classification: maximize separation between groups with means

 $\mathbf{Z}_i \sim \mathcal{N}(oldsymbol{\mu}_k \mathbf{1}_{\{i \in k\}}, oldsymbol{\Sigma}), \quad ext{for known memberships.}$ 

• Clustering: mixture model in the latent space

 $\mathbf{Z}_i \mid i \in k \sim \mathcal{N}(oldsymbol{\mu}_k, oldsymbol{\Sigma}_k), \quad ext{for unknown memberships.}$ 

• Network inference: sparsity constraint on inverse covariance.

$$\mathbf{Z}_i \sim \mathcal{N}(oldsymbol{\mu}, oldsymbol{\Sigma} = oldsymbol{\Omega}^{-1}), \quad \|oldsymbol{\Omega}\|_1 < c.$$

• Variable selection: sparsity constraint on regression coefficients

$$\mathbf{Z}_i \sim \mathcal{N}(\mathbf{x}_i^ op \mathbf{B}, \mathbf{\Sigma}), \quad \|\mathbf{B}\|_1 < c.$$

# Illustration on ecological data (eDNA)

### Oaks powdery mildew data set

Jakuschkin, Fievet, Schwaller, Fort, Robin, and Vacher [Jak+16] Study effects of the pathogen *E.Aphiltoïdes* (mildew) wrt bacterial and microbial communities

### **Species Abundances**

- Microbial communities sampled on the surface of n=116 oak leaves
- Communities sequenced and cleaned resulting in p=114 OTUs (66 bacteria, 48 fungi).

### Covariates and offsets

Characterize the samples and the sampling, most important being

- tree: Tree status with respect to the pathogen (susceptible, intermediate or resistant)
- distTOground: Distance of the sampled leaf to the base of the ground
- orientation: Orientation of the branch (South-West SW or North-East NE)
- readsTOTfun: Total number of ITS1 reads for that leaf
- readsTOTbac : Total number of 16S reads for that leaf

# Abundance table

#### Data table

| b_0T        | b_0T        | b_0T        | b_0T        | b_0T        |
|-------------|-------------|-------------|-------------|-------------|
| <int></int> | <int></int> | <int></int> | <int></int> | <int></int> |
| 146         | 1           | 6           | 6           | 68          |
| 0           | 1           | 0           | 0           | 4           |
| 0           | 0           | 0           | 0           | 128         |
| 1           | 1           | 0           | 4           | 121         |
| 1           | 1           | 1           | 0           | 113         |
| 2           | 20          | 0           | 20          | 90          |
| 2           | 3           | 0           | 11          | 316         |
| 4           | 3           | 0           | 8           | 424         |
| 42          | 0           | 7           | 2           | 312         |
| 2           | 0           | 0           | 4           | 72          |
| 1-10 of 1   | 16 Prev     | vious 1     | 23.         | 12 Next     |

### Matrix of count (log-scale)



# PLN with offsets and covariates (1)

### **Offset:** modeling sampling effort

The predefined offset uses the total sum of reads, accounting for technologies specific to fungi and bacteria:

### **Covariates:** tree and orientation effects ('ANOVA'-like)

The tree status is a natural candidate for explaining a part of the variance.

- We chose to describe the tree effect in the regression coefficient (mean)
- A possibly spurious effect regarding the interactions between species (covariance).

 $M11_oaks \leftarrow PLN(Abundance \sim 0 + tree + offset(log(Offset)), oaks)$ 

What about adding more covariates in the model, e.g. the orientation?

 $M21_oaks \leftarrow PLN(Abundance \sim 0 + tree + orientation + offset(log(Offset)), oaks)$ 

# PLN with offsets and covariates (2)

There is a clear gain in introducing the tree covariate in the model:

|     | nb_param | loglik    | BIC       | ICL       |
|-----|----------|-----------|-----------|-----------|
| M01 | 6669     | -32276.98 | -48127.83 | -52148.35 |
| M11 | 6897     | -31510.75 | -47903.50 | -51631.08 |
| M21 | 7011     | -31422.85 | -48086.56 | -51703.18 |

Looking at the coefficients  ${f B}$  associated with tree bring additional insights:



# Discriminant Analysis

Use the tree variable for grouping (grouping is a factor of group to be considered)



## A PCA analysis of the oaks data set

PCA\_offset ← PLNPCA(Abundance ~ 1 + offset(log(Offset)), data = oaks, ranks = 1:30)



# PCA: removing covariate effects

To hopefully find some hidden effects in the data, we can try to remove confounding ones:

```
PCA_tree ←
PLNPCA(Abundance ~ 0 + tree + offset(log(Offset)), data = oaks, ranks = 1:30)
```



# Clustering of the oaks samples

```
PLN_mixtures ←
    PLNmixture(Abundance ~ 1 + offset(log(Offset)), data = oaks, clusters = 1:3)
myPLN_mix ← getModel(PLN_mixtures, 3)
```

```
myPLN_mix$plot_clustering_pca()
```



myPLN\_mix\$plot\_clustering\_data()



# Network inference

networks  $\leftarrow$  PLNnetwork(Abundance ~ 0 + tree + offset(log(Offset)), data = oaks)



# Availability

### Help and documentation

- github group https://github.com/pln-team
- PLNmodels website <a href="https://pln-team.github.io/PLNmodels">https://pln-team.github.io/PLNmodels</a>

### R/C++ Package PLNmodels

Last stable release on CRAN, development version available on GitHub).

```
install.packages("PLNmodels")
remotes::install_github("PLN-team/PLNmodels@dev")
```

```
library(PLNmodels)
packageVersion("PLNmodels")
```

```
## [1] '0.11.7.9500'
```

### Python module pyPLNmodels

A Python/PyTorch implementation is about to be published

# Simple torch example in R

```
data("oaks")
system.time(mvPLN torch \leftarrow
               PLN(Abundance \sim 1 + offset(log(Offset))).
                   data = oaks, control = list(backend = "torch", trace = 0)))
###
     user system elapsed
###
     2.183 0.016 0.765
svstem.time(myPLN_nlopt ←
               PLN(Abundance ~ 1 + offset(log(Offset)),
                   data = oaks, control = list(backend = "nlopt", trace = 0)))
    user system elapsed
##
     0.584 0.038 0.510
###
myPLN torch$loglik
## [1] -32195.9
myPLN nlopt$loglik
```

## [1] -32276.98

# Variational inference for standard PLN Optimisation

# Inference: general ingredients

Estimate  $heta = (\mathbf{B}, \mathbf{\Sigma})$ , predict the  $\mathbf{Z}_i$ , while the model marginal likelihood is

$$p_{ heta}(\mathbf{Y}_i) = \int_{\mathbb{R}_p} \prod_{j=1}^p p_{ heta}(Y_{ij}|Z_{ij}) \, p_{ heta}(\mathbf{Z}_i) \mathrm{d}\mathbf{Z}_i$$

### Expectation-Maximization

With  $\mathcal{H}(p) = -\mathbb{E}_p(\log(p))$  the entropy of p,

$$\log p_{ heta}(\mathbf{Y}) = \mathbb{E}_{p_{ heta}(\mathbf{Z} \mid \mathbf{Y})}[\log p_{ heta}(\mathbf{Y}, \mathbf{Z})] + \mathcal{H}[p_{ heta}(\mathbf{Z} \mid \mathbf{Y})]$$

EM requires to evaluate (some moments of)  $p_{\theta}(\mathbf{Z} \mid \mathbf{Y})$ , but there is no close form!

### Variational approximation [WJ08]

Use a proxy  $q_\psi$  of  $p_ heta(\mathbf{Z} \mid \mathbf{Y})$  minimizing a divergence in a class  $\mathcal Q$  (e.g., Küllback-Leibler divergence)

$$q_{\psi}(\mathbf{Z})^{\star}rg\min_{q\in\mathcal{Q}}D\left(q(\mathbf{Z}),p(\mathbf{Z}|\mathbf{Y})
ight), \, ext{e.g.}, D(.\,,.\,) = KL(.\,,.\,) = \mathbb{E}_{q_{\psi}}\left[\lograc{q(z)}{p(z)}
ight]$$

# Inference: specific ingredients

Consider  ${\cal Q}$  the class of diagonal multivariate Gaussian distributions:

$$\left\{q:\,q(\mathbf{Z})=\prod_i q_i(\mathbf{Z}_i),\,q_i(\mathbf{Z}_i)=\mathcal{N}\left(\mathbf{Z}_i;\mathbf{m}_i,\mathrm{diag}(\mathbf{s}_i\circ\mathbf{s}_i)
ight),oldsymbol{\psi}_i=\left(\mathbf{m}_i,\mathbf{s}_i
ight)\in\mathbb{R}_p imes\mathbb{R}_p
ight\}$$

and maximize the ELBO (Evidence Lower BOund)

$$egin{aligned} J( heta,\psi) &= \log p_{ heta}(\mathbf{Y}) - KL[q_{\psi}(\mathbf{Z})||p_{ heta}(\mathbf{Z}|\mathbf{Y})] \ &= \mathbb{E}_{\psi}[\log p_{ heta}(\mathbf{Y},\mathbf{Z})] + \mathcal{H}[q_{\psi}(\mathbf{Z})] \ &= rac{1}{n}\sum_{i=1}^n J_i( heta,\psi_i), \end{aligned}$$

where, letting  $\mathbf{A}_i = \mathbb{E}_{q_i}[\exp(Z_i)] = \expig(\mathbf{o}_i + \mathbf{m}_i + rac{1}{2}\mathbf{s}_i^2ig)$ , we have

$$egin{aligned} &J_i( heta,\psi_i) = &\mathbf{Y}_i^{\intercal}(\mathbf{o}_i+\mathbf{m}_i) - \left(\mathbf{A}_i - rac{1}{2}\mathrm{log}(\mathbf{s}_i^2)
ight)^{\intercal} \mathbf{1}_p + rac{1}{2}|\log|\mathbf{\Omega}| \ &- rac{1}{2}(\mathbf{m}_i - \mathbf{\Theta}\mathbf{x}_i)^{\intercal} \mathbf{\Omega}(\mathbf{m}_i - \mathbf{\Theta}\mathbf{x}_i) - rac{1}{2}\mathrm{diag}(\mathbf{\Omega})^{\intercal} \mathbf{s}_i^2 + \mathrm{cst} \end{aligned}$$

# Resulting Variational EM

### Alternate until convergence between

- VE step: optimize  $oldsymbol{\psi}$  (can be written individually)

$$\psi_i^{(h)} = rg\max J_i( heta^{(h)},\psi_i) \left( = rg\min_{q_i} KL[q_i(\mathbf{Z}_i) \,||\, p_{ heta^h}(\mathbf{Z}_i \,|\, \mathbf{Y}_i)] 
ight)$$

• M step: optimize heta

$$heta^{(h)} = rg\maxrac{1}{n}\sum_{i=1}^n J_{Y_i}( heta,\psi^{(h)}_i)$$

We end up with a M-estimator:

$$\hat{ heta}^{ ext{ve}} = rg\max_{ heta} \left( rac{1}{n} \sum_{i=1}^n \sup_{\psi_i} J_i( heta, \psi_i) 
ight) = rg\max_{ heta} \underbrace{\left( rac{1}{n} \sum_{i=1}^n ar{J}_i( heta) 
ight)}_{ar{J}_n( heta)}$$

where  ${ar J}_i( heta) = \sup_{\psi_i} J_i( heta,\psi_i)$  is the profiled objective function.

# **Optimization of simple PLN models**

### Property of the objective function

The ELBO  $J( heta,\psi)$  is bi-concave, i.e.

- concave wrt  $\psi = (\mathbf{M}, \mathbf{S})$  for given heta
- convace wrt  $heta = (oldsymbol{\Sigma}, \mathbf{B})$  for given  $\psi$

but not jointly concave in general.

M-step: analytical

$$\hat{\mathbf{B}} = \left(\mathbf{X}^{\top}\mathbf{X}
ight)^{-1}\mathbf{X}\mathbf{M}, \quad \hat{\mathbf{\Sigma}} = \frac{1}{n}\left(\mathbf{M} - \mathbf{X}\hat{\mathbf{B}}
ight)^{\top}\left(\mathbf{M} - \mathbf{X}\hat{\mathbf{B}}
ight) + \frac{1}{n}\mathrm{diag}(\mathbf{1}^{\intercal}\mathbf{S}^{2})$$

VE-step: gradient ascent

$$rac{\partial J(\psi)}{\partial \mathbf{M}} = \left(\mathbf{Y} - \mathbf{A} - (\mathbf{M} - \mathbf{X}\mathbf{B})\mathbf{\Omega}
ight), \qquad rac{\partial J(\psi)}{\partial \mathbf{S}} = rac{1}{\mathbf{S}} - \mathbf{S} \circ \mathbf{A} - \mathbf{S} \mathrm{D}_{\mathbf{\Omega}}.$$

 $\rightsquigarrow$  Same routine for other PLN variants.

# Implementations

Medium scale problems (R/C++ package)

- **algorithm**: conservative convex separable approximations [Sva02]
- implementation: <code>NLopt</code> nonlinear-optimization library [Joh11]  $\rightsquigarrow$  Up to thousands of sites (  $n\approx 1000s$  ), hundreds of species (  $p\approx 100s$  )

Large scale problems (Python/Pytorch module)

- **algorithm**: Rprop (gradient sign + adaptive variable-specific update) [RB93]
- **implementation**: torch with GPU auto-differentiation [FL22; Pas+17]  $\rightsquigarrow$  Up to  $n \approx 100,000$  and  $p \approx 10,000s$



n = 10,000, p = 2,000, d = 2 (running time: 1 min 40s)

# Variational estimators of standard PLN Properties

# Estimator Bias and consistency

### M-estimation framework [Van00]

Let  $\hat{\psi}_i=\hat{\psi}_i( heta,\mathbf{Y}_i)=rg\max_\psi J_i( heta,\psi)$  and consider the stochastic map  $ar{J}_n$  defined by

$${ar J}_n \ : \quad heta \mapsto rac{1}{n} \sum_{i=1}^n J_i( heta, \hat{\psi}_i) \stackrel{\Delta}{=} rac{1}{n} \sum_{i=1}^n {ar J}_i( heta)$$

M-estimation suggests that  $\hat{\theta}^{ve} = \arg \max_{\theta} \bar{J}_n(\theta)$  should converge to  $\bar{\theta} = \arg \max_{\theta} \bar{J}(\theta)$  where  $\bar{J}(\theta) = \mathbb{E}_{\theta^*}[\bar{J}_Y(\theta)] = \mathbb{E}_{\theta^*}[J_Y(\theta, \hat{\psi}(\theta, Y))].$ 

### Theorem [WM15]

In this line, Westling and McCormick [WM15] show that under regularity conditions ensuring that  $\bar{J}_n$  is smooth enough (e.g. when  $\theta$  and  $\psi_i$  are restricted to compact sets),

$${\hat heta}^{\mathrm{ve}} \xrightarrow[n o +\infty]{a.e.} {ar heta}$$

Open question:  $ar{ heta}= heta^\star$  ? No formal results as  $ar{J}$  is untractable but numerical evidence suggests so.

# Numerical study

# Study Bias of the estimator of $\hat{m{B}}$

- number of variables p=50
- number of covariates  $d\in\{2,4\}$
- number of samples  $n \in \{30, 250, 500, 1000\}$
- sampling effort (TSS)  $pprox 10^4$
- $oldsymbol{\Sigma}$  as  $\sigma_{jk}=\sigma^2
  ho^{|j-k|}$  , with ho=0.2
- ${f B}$  with entries sampled from  ${\cal N}(0,1/d)$
- noise level  $\sigma^2 \in \{0.25, 1, 4\}$
- 100 replicates

# Bias of $\hat{oldsymbol{B}}$



Bias vanishes with  $\hat{n}$ 

# Root mean square error of $\hat{oldsymbol{B}}$



RMSE vanishes with  $\hat{n}$ 

# Variance: naïve approach

Do as if  $\hat{ heta}^{\mathrm{ve}}$  was a MLE and  $ar{J}_n$  the log-likelihood.

### Variational Fisher Information

The Fisher information matrix is given by (from the Hessian of  $oldsymbol{J}$ ) by

$$I_n({\hat{ heta}}^{ ext{ve}}) = egin{pmatrix} rac{1}{n}(\mathbf{I}_p\otimes \mathbf{X}^ op) ext{diag}( ext{vec}(\mathbf{A}))(\mathbf{I}_p\otimes \mathbf{X}) & \mathbf{0} \ \mathbf{0} & rac{1}{2}\mathbf{\Omega}^{-1}\otimes \mathbf{\Omega}^{-1} \end{pmatrix}$$

and can be inverted blockwise to estimate  $\mathbb{V}(\hat{ heta}).$ 

### Confidence intervals and coverage

 $\hat{\mathbb{V}}(B_{kj}) = [n(\mathbf{X}^ op \operatorname{diag}(\operatorname{vec}(\hat{A}_{.j}))\mathbf{X})^{-1}]_{kk}, \qquad \hat{\mathbb{V}}(\Omega_{kl}) = 2\hat{\Omega}_{kk}\hat{\Omega}_{ll}$ 

The confidence intervals at level lpha are given by

$$B_{kj} = \hat{B}_{kj} \pm rac{q_{1-lpha/2}}{\sqrt{\hat{\mathbb{V}}(B_{kj})}}, \qquad \Omega_{kl} = \hat{\Omega}_{kl} \pm rac{q_{1-lpha/2}}{\sqrt{\hat{\mathbb{V}}(\Omega_{kl})}}.$$

# Variance: empirical vs variational



Variance underestimated...

# 95% confident interval - coverage



No trusted confidence intervals can be derived out-of-the box

### Theorem [WM15]

Under additional regularity conditions (still satisfied for example when heta and  $\psi_i$  are restricted to compact sets), we have

$$\sqrt{n}(\hat{\theta}^{\mathrm{ve}} - \bar{\theta}) \xrightarrow{d} \mathcal{N}(0, V(\bar{\theta})), \quad \text{where } V(\theta) = C(\theta)^{-1} D(\theta) C(\theta)^{-1}$$
  
for  $C(\theta) = \mathbb{E}[\nabla_{\theta\theta} \bar{J}(\theta)]$  and  $D(\theta) = \mathbb{E}\left[(\nabla_{\theta} \bar{J}(\theta))(\nabla_{\theta} \bar{J}(\theta)^{\mathsf{T}}\right]$ 

Practical computations chain rule

$$egin{aligned} \hat{C}_n( heta) &= rac{1}{n}\sum_{i=1}^n \left[ 
abla_{ heta heta}J_i - 
abla_{ heta\psi_i}J_i(
abla_{\psi_i\psi_i}J_i)^{-1}
abla_{ heta\psi_i}J_i^{\intercal} 
ight]( heta,\hat{\psi}_i) \ \hat{D}_n( heta) &= rac{1}{n}\sum_{i=1}^n \left[ 
abla_{ heta}J_i
abla_{ heta}J_i^{\intercal} 
ight]( heta,\hat{\psi}_i) \end{aligned}$$

Caveat

For  $\theta = (\mathbf{B}, \mathbf{\Omega})$ ,  $\hat{C}_n$  requires the inversion of n matrices with  $(p^2 + pd)$  rows/columns... We thus first consider the estimation of  $\theta = \mathbf{B}$  only, with known variance  $\mathbf{\Omega}^{-1}$ 

# Reasonably ugly formula

Additional matrix algebra efforts and computational tricks give

$$\hat{D}_n( heta) = rac{1}{n}\sum_{i=1}^n \left[ (\mathbf{Y}_i - \mathbf{A}_i)(\mathbf{Y}_i - \mathbf{A}_i)^\intercal 
ight] \otimes \mathbf{x}_i \mathbf{x}_i^\intercal \in \mathbb{R}^{dp imes dp}$$

and

$$\hat{{C}}_n( heta) = -rac{1}{n}\sum_{i=1}^n \left( {oldsymbol{\Sigma}} + ext{diag}({oldsymbol{A}}_i)^{-1} + rac{1}{2} ext{diag}({oldsymbol{s}}_i^4) 
ight)^{-1} \otimes {oldsymbol{x}}_i {oldsymbol{x}}_i^\intercal \in \mathbb{R}^{dp imes dp}$$

 $\rightsquigarrow$  Practically not very useful since  $\Sigma$  is unknown

#### Ongoing work

Derive the formula with unknown  $oldsymbol{\Sigma}$ 

- Plugin-in  $\hat{\Sigma}$  in the formula of  $\hat{C}_n$  leads very poor results
- Need to account for cross-terms in  $abla_{\theta\psi_i}J_i(\theta,\hat{\psi}_i)$  between  $\Omega$  and  $\psi_i$ , and inverse with large matrices: limited practical interest
- Idea: use Jackknife resampling to estimate the variance

# 95% CI - sandwich coverage



Coverage seems ok with fixed variance matrix

Zero-inflated PLN

### Motivations

- account for a large amount of zero, i.e. with single-cell data,
- try to separate "true" zeros from "technical"/dropouts

### The Model

Use two latent vectors  $\mathbf{W}_i$  and  $\mathbf{Z}_i$  to model excess of zeroes and dependence structure

$$egin{aligned} \mathbf{Z}_i &\sim \mathcal{N}(\mathbf{o}_i + \mathbf{x}_i^{ op} \mathbf{B}, \mathbf{\Sigma}) \ W_{ij} &\sim \mathcal{B}( ext{logit}^{-1}(\mathbf{x}_i^{ op} \mathbf{B}_j^0)) \ Y_{ij} \,|\, W_{ij}, Z_{ij} &\sim W_{ij} \delta_0 + (1 - W_{ij}) \mathcal{P}\left( \exp\{Z_{ij}\} 
ight), \end{aligned}$$

The unkwown parameters are

- ${f B}$ , the regression parameters (from the PLN component)
- ${f B}^0$ , the regression parameters (from the Bernoulli component)
- $\boldsymbol{\Sigma}$ , the variance-covariance matrix

 $\rightsquigarrow$  ZI-PLN is a mixture of PLN and Bernoulli distribution with shared covariates.

# **ZI-PLN** Inference

Same routine...

### Variational approximation

$$p(\mathbf{Z}_i, \mathbf{W}_i \mathbf{Y}_i) pprox q_\psi(\mathbf{Z}_i, \mathbf{W}_i) pprox q_{\psi_1}(\mathbf{Z}_i) q_{\psi_2}(\mathbf{W}_i)$$

with

$$q_{\psi_1}(\mathbf{Z}_i) = \mathcal{N}(\mathbf{Z}_i; \mathbf{m}_i, ext{diag}(\mathbf{s}_i \circ \mathbf{s}_i)), \qquad q_{\psi_2}(\mathbf{W}_i) = \otimes_{j=1}^p \mathcal{B}(W_{ij}, \pi_{ij})$$

### Variational lower bound

Let  $heta = (\mathbf{B}, \mathbf{B}^0, \mathbf{\Sigma})$  and  $\psi = (\mathbf{M}, \mathbf{S}, \mathbf{\Pi})$ , then

$$egin{aligned} J( heta,\psi) &= \log p_{ heta}(\mathbf{Y}) - KL(p_{ heta}(.\,|\mathbf{Y})\|q_{\psi}(.\,)) \ &= \mathbb{E}_{q_{\psi}}\log p_{ heta}(\mathbf{Z},\mathbf{W},\mathbf{Y}) - \mathbb{E}_{q_{\psi}}\log q_{\psi}(\mathbf{Z},\mathbf{W}) \ &= \mathbb{E}_{q_{\psi}}\log p_{ heta}(\mathbf{Y}|\mathbf{Z},\mathbf{W}) + \mathbb{E}_{q_{\psi_1}}\log p_{ heta}(\mathbf{Z}) + \mathbb{E}_{q_{\psi_2}}\log p_{ heta}(\mathbf{W}) \ &- \mathbb{E}_{q_{\psi_1}}\log q_{\psi_1}(\mathbf{Z}) - \mathbb{E}_{q_{\psi_2}}\log q_{\psi_2}(\mathbf{W}) \end{aligned}$$

**Property**: J is separately concave in heta,  $\psi_1$  and  $\psi_2$ .

### Criterion

Recall that  $\theta = (\mathbf{B}, \mathbf{B}^0, \mathbf{\Omega} = \mathbf{\Sigma}^{-1})$ . Sparsity allows to control the number of parameters:

$$rg\min_{ heta,\psi} J( heta,\psi) + \lambda_1 \|\mathbf{B}\|_1 + \lambda_2 \|\Omega\|_1 \left(+\lambda_1 \|\mathbf{B}^0\|_1
ight)$$

### Alternate optimization

- (Stochastic) Gradient-descent on  $\mathbf{B}^0, \mathbf{M}, \mathbf{S}$
- Closed-form for posterior probabilities  $oldsymbol{\Pi}$
- Inverse covariance  $oldsymbol{\Omega}$

$$\circ~$$
 if  $\lambda_2=0$ ,  $\hat{oldsymbol{\Sigma}}=n^{-1}\left[(\mathbf{M}-\mathbf{X}\mathbf{B})^{ op}(\mathbf{M}-\mathbf{X}\mathbf{B})+ar{\mathbf{S}}^2
ight]$ 

 $\circ$  if  $\lambda_2>0$ ,  $\ell_1$  penalized MLE (  $\rightsquigarrow$  Graphical-Lasso with  $\hat{oldsymbol{\Sigma}}$  as input)

- PLN regression coefficient  ${f B}$ 

$$\circ\;$$
 if  $\lambda_1=0$ ,  $\hat{\mathbf{B}}=[\mathbf{X}^{ op}\mathbf{X}]^{-1}\mathbf{X}^{ op}\mathbf{M}$ 

 $\circ\;$  if  $\lambda_1>0$ , vectorize and solve a  $\ell_1$  penalized least-squared problem

**Initialize**  $B^0$  with logistic regression on  $\delta_0(\mathbf{Y})$ ,  $\mathbf{B}$  with Poisson regression

# A quick example in genomics (1)

### scRNA data set

The dataset scRNA contains the counts of the 500 most varying transcripts in the mixtures of 5 cell lines in human liver (obtained with standard 10x scRNAseq Chromium protocol).

We subsample 500 random cells and the keep the 200 most varying genes

```
library(PLNmodels); library(ZIPLN)
data(scRNA); set.seed(1234)
scRNA ← scRNA[sample.int(nrow(scRNA), 500), ]
scRNA$counts ← scRNA$counts[, 1:200]
scRNA$counts %>% as_tibble() %>% rmarkdown::paged_table()
```

| KRT81       | AKR1B10     | LCN2        | AKR1C2      | ALDH1A1     |
|-------------|-------------|-------------|-------------|-------------|
| <int></int> | <int></int> | <int></int> | <int></int> | <int></int> |
| 1           | 0           | 1           | 0           | 0           |
| 3           | 1           | 3           | 0           | 0           |
| 117         | 82          | 0           | 41          | 21          |
| 1           | 2           | 2           | 0           | 0           |
| 2           | 1           | 0           | 0           | 2           |

# A quick example in genomics (2)

### Model fits

We adjust the standard PLN model and the ZI-PLN model with some sparsity on the precision matrix:

```
system.time(myPLN ←
    PLN(counts ~ 1 + offset(log(total_counts)),
        data = scRNA, control = list(trace = 0, xtol_rel = 1e-4)))
## user system elapsed
## 6.055 0.209 5.100
system.time(myZIPLN ←
    ZIPLN(counts ~ 1 + offset(log(total_counts)), rho = .2,
        data = scRNA, control = list(trace = 0)))
## user system elapsed
```

## 14.899 0.211 10.723

# A quick example in genomics (3)



ZI-PLN seems to be less variant for predicting small counts

# A quick example in genomics (4)

prcomp(myZIPLN\$latent) %>% factoextra::fviz\_pca\_ind(col.ind = scRNA\$cell\_line)



# A quick example in genomics (5)

See Sophie Donnet's talk for more about Stochastic Block Models

library(sbm)
A ← myZIPLN\$model\_par\$Omega ≠ 0; diag(A) ← 0
mySBM ← estimateSimpleSBM(A, estimOptions=list(plot=FALSE))

# Conclusion

### Summary

- PLN = generic model for multivariate count data analysis
- Flexible modeling of the covariance structure, allows for covariates
- Efficient V-EM algorithm
- Variational estimator is asymptotically normal (and hopefully unbiased) with computable covariance matrix.
- ZI-PLN reduces (some) problems induced by high sparsity in the data

## Work in progress

- Caracterisation of Variational Estimator
- with J. Stoehr Direct likelihood optim (SGD with Important Sampling)
- with J. Kwon: optimisation guarantees coupling adaptive SGD + variance reduction
- Connection/Comparison with VAE with e.g Poisson neg log-likelihood as loss

## Advertisement

https://computo.sfds.asso.fr, a journal promoting reproducible research in ML and stat.

# References

Aitchison, J. and C. Ho (1989). "The multivariate Poisson-log normal distribution". In: *Biometrika* 76.4, pp. 643-653.

Chiquet, J., M. Mariadassou, and S. Robin (2018). "Variational inference for probabilistic Poisson PCA". In: *The Annals of Applied Statistics* 12, pp. 2674-2698. URL: http://dx.doi.org/10.1214/18-AOAS1177.

Chiquet, J., M. Mariadassou, and S. Robin (2019). "Variational inference for sparse network reconstruction from count data". In: *Proceedings of the 19th International Conference on Machine Learning (ICML 2019)*.

Chiquet, J., M. Mariadassou, and S. Robin (2021). "The Poisson-Lognormal Model as a Versatile Framework for the Joint Analysis of Species Abundances". In: *Frontiers in Ecology and Evolution* 9. DOI: 10.3389/fevo.2021.588292.

Facon, B., A. Hafsi, M. C. de la Masselière, et al. (2021). "Joint species distributions reveal the combined effects of host plants, abiotic factors and species competition as drivers of species abundances in fruit flies". In: *Ecological Letters*. DOI: 10.1111/ele.13825.

Falbel, D. and J. Luraschi (2022). *torch: Tensors and Neural Networks with 'GPU' Acceleration*. https://torch.mlverse.org/docs, https://github.com/mlverse/torch.

Inouye, D. I., E. Yang, G. I. Allen, et al. (2017). "A review of multivariate distributions for count data derived from the Poisson distribution". In: *Wiley Interdisciplinary Reviews: Computational Statistics* 9.3.

Jakuschkin, B., V. Fievet, L. Schwaller, et al. (2016). "Deciphering the pathobiome: intra-and interkingdom interactions involving the pathogen Erysiphe alphitoides". In: *Microbial ecology* 72.4, pp. 870-880.

Johnson, S. G. (2011). The NLopt nonlinear-optimization package. URL: http://ab-initio.mit.edu/nlopt.