Machine learning to probe novel regulatory elements in the human genome

Charles Lecellier

charles.lecellier@igmm.cnrs.fr

IGMM/LIRMM/IMAG team

Computational Regulatory Genomics

Probing genomic regulations

from Wasserman & Sandelin, Nature Reviews Genetics 2004

formulation of the problem

loss function : optimized during training to fit machine learning model parameters. In the simplest case, it measures the discrepancy between predictions and observations e.g. mean-squared error (MSE – regression), cross-entropy (classification).

objectives

. **PREDICTION**: e.g. better interpretation of genetic variations in particular in noncoding regions (80% of the variants)

what is the effect/impact of a SNP, which modifies X, on Y?

. **EXPLANATION**: e.g. characterization of molecular determinants (DNA features/instructions) and finding the molecular rules | DNA grammar | *cis*-regulatory code

what are the relevant Xs?

>>>> Need interpretable models

$$y(s) = a + \sum_{i} b_i x_{i,s} + e(s)$$
 linear regression

where y(g) is the expression of seq s, xi,s is variable i for seq s, e(s) is the residual error associated with seq s, a is the intercept and bi is the regression coefficient associated with variable i.

$$P(1|s) = S(a + \sum_{i} b_i x_{i,s})$$
 logistic regression

P(1 | s) is the probability that sequence s belongs to the first class, S is the sigmoid function

LASSO (Least Absolute Shrinkage and Selection Operator-Tibshirani R. J. of the Royal Statistical Society. 1996): by penalizing the absolute size of the regression coefficients (I1-norm), the LASSO drives the coefficients of irrelevant variables to zero, thus performing automatic variable selection.

Many publications: Li et al., PLoS CB 2014 ; Schmidt et al., NAR 2017 ; Bessière, Taha et al., PLoS CB 2018 ; Vandel et al., BMC bioinformatics 2019 ; Menichelli et al., PLoS CB 2021 ; Romero et al., bioRxiv 2022

• • •

Convolution Neural Network

from Eraslan, G., Avsec, Ž., Gagneur, J. et al. Nat Rev Genet 2019

Finding the molecular rules | DNA grammar | *cis*-regulatory code

$Y = f(DNA \ sequence)$

$RNA \ expression \mid TF \ binding \mid epigenetic \ marks = f(DNA \ sequence)$

Whitaker et al., Nature Methods 2015 Alipanahi et al. Nat. Biotechnology 2015 Zhou et al., Nature Methods 2015 Quang and Xie, Nucleic Acids Res. 2016 Kelley et al., Genome Res. 2016 Zhou et al., Nature Genetics 2018 Bessière, Taha et al., PLoS CB 2018 Vandel et al., BMC bioinformatics 2019 Avsec et al., Nature Genetics 2021 Menichelli et al., PLoS CB 2021 Grapotte, Saraswat, Bessière et al., Nature Communications 2021 ...

Many regulatory processes are directly predictable by DNA sequence

Decoding the DNA grammar

One example:

predicting transcription initiation at microsatellites

Grapotte, Saraswat, Bessière et al., Nature Communications 2021

Microsatellite | short tandem repeats (STRs)

- . short repetitive motifs of 1-6 nucleotides
- . tandemly repeated
- . flanked by unique sequences

Microsatellites	Unique sequence Repeat units Unique sequence
Mononucleotide	GGTAGCCAA A A A A (A)n CGATCCA
Dinucleotide	TCGCATGCA CA CA (CA)n ATTCGCA
Trinucleotide	TTAGCATCAG CAG (CAG)n CCAGTGA
Tetranucleotide	AATGGTACCGG (CCGG)n GTCACGT
Pentanucleotide	CGATGATCCAAG (CCAAG)n TTACGTA
Hexanucleotide	GCTAAGGCCATTG (CCATTG)n ACTGTCA

https://link.springer.com/referenceworkentry/10.1007%2F978-3-642-16483-5_3731

~3% of the human genome

Grapotte, Saraswat, Bessière et al., Nature Communications 2021 11

CNN to predict transcription initiation at STRs

e-hot encoded matrix

Convolution filter #1 kernel size: 5x4 ; # filters: 50 ; stride: 1

Batch normalisation

max pooling pool size: 2

Convolution filter #2 kernel size: 3x1 ; # filters: 30 ; stride: 1

Convolution filter #3 kernel size: 3x1 ; # filters: 30 ; stride: 1

dense layer #1 (500 neurons)

dense layer #2 (200 neurons) OOOOOOOO

regression neuron

classification neuron

Mathys Grapotte

Manu Saraswat

https://gite.lirmm.fr/ibc/deepSTR

CNN results

Spearman correlation b/w predicted and observed CAGE signal

Importance of CNN architecture

CNN architecture, which is optimized for prediction, influences the representations of sequence motifs captured by first layer filters.

Prediction and interpretation require distinct CNN architectures, in particular adapting max-pooling and convolutional filter size

from Koo & Eddy, PLoS CB 2019

The black box issue

>>> need interpretation methods

Interpreting CNNs: determining feature importance scores

GOAL: attribute feature importance scores to highlight the parts of a given input that are most influential for the model prediction and thereby help to explain why such a prediction was made. When DNA is used as input, importance scores highlight sequence motifs.

from Eraslan, G., Avsec, Ž., Gagneur, J. et al. Nat Rev Genet 2019

Interpretation methods use a **black box** model and a **sequence of interest** as the input and, then (i) mutate the input and evaluate the consequences on the output (**perturbation-based**) or (ii) backpropagate the output relative to the input (**backpropagation-based**)

Example of backpropagation-based method: DeepLIFT

backpropagation approaches propagate an importance signal from an output neuron backwards through the layers to the input in one pass and generate a **saliency map**.

DeepLIFT explains the difference in output from some 'reference' output in terms of the difference of the input from some 'reference' input.

from Shrikumar et al. Arxiv, oct. 2019

Limits of interpretation methods (ii)

Saliency maps depend on the chosen input

which features to choose?

from Ghorbani, Abid & Zou, The Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19) top row shows the the original images and their saliency maps and the bottom row shows the perturbed images

Limits of interpretation methods (i)

. Explainable model - two steps :

(i) Training step and

(ii) Interpretation step

. In the interpretation step, a subset of sequences is used to explain the model, but **are they truly representative?**

. Besides, how do we know **which features** are truly important for the prediction?

. Need models that are **interpretable in the first place** (Rudin, Nature Machine Intelligence 2019)

i.e. **combine training & interpretation** and therefore do not rely on any input for interpretation

. Need also to infer features **directly from DNA sequence**

Modular Neural Networks

(1) not a linear model

(2) the coefficients of the regression indicate where the model is expected to find the filter/motif

(3) the coefficients indicate **which** module/filter/motif is important

learning an MNN

Each filter of each module cannot be combined with another (no link b/w filters)

one module > one filter > one motif

MNN is not a mere 1-layer CNN because filters from different modules can have various sizes, a flexibility that is not allowed in a classical CNN wherein all filters from the same layer have the same size.

CNN vs. MNN

CNN 776,580 parameters MNN ~1,000 parameters

STR Class	CNN-Model * (Spearman)	Modular Network (Spearman)	Number of filters
Т	0.87	0.79	9
AC	0.78	0.72	9
GT	0.78	0.72	8
А	0.73	0.69	7
AG	0.72	0.64	4
AGG	0.57	0.51	5
AAT	0.62	0.61	10

* The CNN-Model contains 110 filters

MNN to probe the functional consequences of transcription initiating at STRs

STRs are implicated in various regulatory functions

Process	Gene (Organism)	Repeat Motif	References
Binding of transcription factors to microsatellite DNA	SLC11A1 (human)	GT (imperfect)	Bayele etal. 2007
	ECE-1c (human)	CA (imperfect)	Taka etal. 2013
	TH (human)	TACT	Li etal. 2012
	PIG3 (human)	TGYCC	Albanese etal. 2001
	nadA (N. meningitidis)	ТААА	Contente etal. 2002, Martin etal. 2005
Spacing between promoter elements	GP91-PHOX (human)	CA	Uhlemann etal. 2004
	IGF1 (human)	CA	Chen etal. 2016
Long-range interactions	Intergenic (Drosophila & huma	GATA	Kumar etal. 2013
Transcription start site selection	HO-1 (human)	AC	Kramer etal. 2013
	ECE-1c (human)	CA (imperfect)	Li etal. 2012
Transcription end site selection	ASS1 (human)	GT	Tseng etal. 2013
RNA half-life	FGF9 (human)	TG (imperfect)	Chen etal. 2007
Alternative splicing	APOA2 (human)	GT	Cuppens etal. 1998
	CFTR (human)	TG	Hefferon etal. 2004
	eNOS (human)	CA	Hui etal. 2003
	Various (human)	CA	Hui etal. 2005
Nucleosome packaging	HIS3 (S. cerevisiae)	А	Iyer and Struhl 1995
	CSF1 (human)	TG	Liu etal. 2001, Liu etal. 2006
	CYC1 (S. cerevsiae)	CG	Wong etal. 2007
	Genomic (human)	BAA	Zhao etal. 2015
Histone modification	Genomic (human)	Various	Gymrek etal. 2016
Methylation	Genomic (human & chimpanze	CG	Fukuda etal. 2013
	Genomic (human)	CG	Quilez etal. 2016
Noncoding RNA function	Genomic (Drosophila)	AAGAG	Pathak etal. 2013
	Genomic (mammals)	GAA	Zheng etal. 2010
Meiotic recombination	ARG4 (S. cerevisiae)HIS4 (S. ce	TGCCGNN	Gendrel etal. 2000, Kirkpatrick etal. 1999
	Genomic (A. thaliana)	CCT & CCN	Choi etal. 2013, Shilo etal. 2015

EWS-FLI1-bound GGAA microsatellite repeats are transcriptionally active

A673 & SKNMC: 2 Ewing Sarcoma cells* MRC5: fibroblasts – negative control (no EWS_FLI)

from Boulay et al., Genes & Dev. 2018

*not tested in FANTOM5

but transcription initiation detected at several GGAA STRs in non-sarcoma cells

. Transcription inhibition is feasible by targeting immediately adjacent unique genomic sequences with CRISPR/dCas9-KRAB

. Silencing of a single EWS-FLI1-bound GGAA repeat enhancer 470 kb from the SOX2 locus is sufficient to impair the growth of Ewing sarcoma xenografts.

pathogenic variants are associated with STRs initiating transcription

CAGE signal at STRs associated with ClinVar variants - one-way ANOVA test p-value p-value = 2.5e-27

STR-mediated long-range regulations expression STR (eSTR) Gymrek et al., Nature Genetics 2016

27

Model accuracies using as input only flanking sequences

Example of sequence used as input in D:

>Human_STR_873642;T;+ CAGTCAAAGGTAATCATGGGTCCTTACCTGGGGTCTAGTAGAGCTTACAG-NNNNNNNN-CTTAacaaaaatatctgtacatgtttcatgtacacaatttagtgcatatg

eSTR require adjacent SNPs

'adjacent SNPs located outside the STR were required for the STR to function as eSTR.'

Functional link b/w STR and surrounding sequences

SNPSTR (Mountain et al., Genome Res 2002 ; Agrafioti et al., Nucleic Acids Res. 2007)

STR length imputation with surrounding SNPs (Saini et al., Nat. Comm 2018)

Step 1: Family based SNP phasing

Step 2: STR genotyping

AGTC (AC) TC

AGTC (AC) TCC

CGTC (AC) TCC

Phased SNPs

Unphased STRs

Beagle

AGTC (AC) TC

AGTC (AC) TCC

CGTC (AC), TCC

Phased SNP-STR Panel

50kb around STRs

STR imputation from SNP genotypes

from Saini et al., Nat. Comm 2018

Taking into account STR surrounding sequences and SNPs located within these sequences appears instrumental to better understand regulations orchestrated by STRs

STR-surrounding SNPs (i.e. SNPSTR) should be taken into account for eSTR computation

115,608 (STR, gene) pairs tested – 17 tissues as in Fotsing et al., Nature Genetics 2019

14,340 significant associations

between 8,458 STRs and 11,060 genes in at least one tissue (FDR = 0.05)

enrichment in previously published eQTLs (GTEx, Nature 2017) sQTLs (Garrido-Martin et al, Nature Communications, 2021) eSTRs (Fotsing et al., Nature Genetics 2019)

positive and negative impact on gene expression

Likewise in Genome Wide Association Study (GWAS/PheWAS)

Clinical trait ~ STR score

combine both approaches to verify that STR associated to specific traits regulate genes implicated in those traits.

better interpret > 30,000 variants located around STRs and often in non-coding regions At the molecular DNA level: exploiting the interpretability nature of MNNs

Filter interpretation

Consider (T)_n model (9 modules/filters – combined through a linear regression)

Each (T)_n eSTR is associated with a vector of 9 values corresponding to the regression coefficients

k=10

Hierarchical clustering

Correlation between MNN scores and expression of the gene target

For each cluster, find relevant motifs/filters and compare w/ existing motifs (JASPAR)

Experimental validation (S. Spicuglia, Marseille)

. ML is able to model gene expression and various genomic regulations

. DNA sequence per se is key and a lot of information/instructions remain to be discovered – we have not finished reading the book...

. Need fully interpretable models in order to provide hypotheses than can be experimentally validated and to generate novel biological knowledge

. Need of specific architecture and/or specific benchmarks (i.e. not MNIST*) not necessarily derived from image or natural language processing

* We know what's an '8', we don't know the DNA grammar yet (synthetic sequences and MPRA - ?)

Y: reporter gene expression ; binding of a TF ; ...

Acknowledgments

Computational Regulatory Genomics

Laurent Bréhélin Quentin Bouvier Mathys Grapotte Sophie Lèbre Charles Lecellier Mathilde Robin Océane Cassan

CR CNRS, LIRMM PhD student, IGMM PhD student, IGMM MCF, IMAG & LIRMM DR CNRS, IGMM & LIRMM Engineer, LIRMM & IRCM Post-doc, LIRMM

We are hiring! post-doc (ANR 3 years)

Alumni

Chloé Bessière Lisa Calero Manu Saraswat Christophe Menichelli Mateo Mevnier Yulia Rodina Raphael Romero Elodie Simphor

Collaborators

Wyeth W. Wasserman FANTOM consortium, Piero Carninci Garrido-Martin Diego and Roderic Guigo Sanofi - Bioinformatics Unit Salvatore Spicuglia Jose-Juan Lopez-Rubio

PhD student, IGMM grad. Student, IGMM arad. Student, IGMM PhD student, LIRMM arad. Student, I Post-doc, LIRMN PhD student, IM grad. Student, IC^^^^

Centre for Molecular Medicine

Consulat général de France à Vancouver

agence nationale

Vancouver, Canada Yokohama, Japan Barcelona, Spain Boston, USA Marseille, France Montpellier, France

FANTOM5

SANOFI

One possible solution: TF-MoDISco

Shrikumar et al. Arxiv, oct. 2020

In TF-MoDISco (which first uses DeepLift), a **clustering method** on a large dataset used as the input is used.

While being more robust, TF-MoDISco still uses only a subset of the sequence used for learning

Figure 1: Summary of TF-MoDISco

CNN-based pairwise classification of STRs using only STR flanking sequences

>Human_STR_873642;T;+ CAGTCAAAGGTAATCATGGGTCCTTACCTGGGGTCTAGTAGAGCTTACAG-NNNNNNNN-NNNNNAaaatatctgtacatgtttcatgtacacaatttagtgcatatg

Functional link b/w STR and surrounding sequences

SNPSTR (Mountain et al., Genome Res 2002 ; Agrafioti et al., Nucleic Acids Res. 2007)⁴⁵

SNPs linked tightly to STR polymorphisms.

Such combinations satisfy the following three requirements:

- (1) close physical linkage of two or more polymorphisms;
- (2) significant difference in mutation rate between polymorphisms; and,
- (3) potential for a large number of independent compound haplotypic systems.

SNP mutation rate $\sim 2.0-2.5 \times 10^{-8}$ mutations per nucleotide position per generation STR mutation rate $\sim 1.5 \times 10^{-3}$ per STR per generation

'This combination of co-inherited markers evolving at different rates may offer the possibility of gaining better resolved insights into population genetic processes compared to when these different marker types are used separately' (Aarafioti et al., Nucleic Acids Res. 2007)

SNPSTR DB [Agrafioti et al., Nucleic Acids Res. 2007]

arbitrarily consider SNPs located 250bp apart of STRs (so each SNPSTR can be considered a small haplotype with no recombination occurring between the two individual markers)

Remember that, to predict transcription initiation, 50bp around STR 3'end (as defined by the tx strand) are sufficient - Grapotte et al., Nat. Comm. 2021

The complete sequence of a human genome

T2T consortium, Science 376, 44-53 1 April 2022

	GRCH38	T2T-CHM13	difference
Percentage of repeats (%)	51.89	53.94	
Repeat bases (Mbp)	1,516.37	1,647.81	+8.7
Long interspersed nuclear elements	626.33	631.64	+0.8
Short interspersed nuclear elements	386.48	390.27	+1.0
Long terminal repeats	267.52	269.91	+0.9
Satellite	76.51	150.42	+96.6
DNA	108.53	109.35	+0.8
Simple repeat	36.5	77.69	+112.9
Low complexity	6.16	6.44	+4.6
Retroposon	4.51	4.65	+3.3
rRNA	0.21	1.71	+730.4

https://www.ncbi.nlm.nih.gov/assembly/GCA_009914755.4