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Machine learning to probe novel regulatory elements in 
the human genome



from Wasserman & Sandelin, Nature Reviews Genetics 2004

Probing genomic regulations

many high-throughput technologies and 
large amount of data

RNA-seq

ChIP-seq (TF, epigenetics marks)

Open regions (ATAC-seq)

DNA methylation

DNA sequence (motifs, k-mer, …)



k-mer count
motif scores
epigenetic marks
methylation
…

predicted variable Y
(labels – supervised problem)

predictive variables X

classification
(0 is not trivial)

TF binding
epigenetic marks
…

regression

RNA level
epigenetic marks
…

𝑌~𝑋

loss function : optimized during training to fit machine learning model parameters. In 
the simplest case, it measures the discrepancy between predictions and observations 
e.g. mean-squared error (MSE – regression), cross-entropy (classification).

formulation of the problem

OR



. PREDICTION: e.g. better interpretation of genetic variations in particular in non-
coding regions (80% of the variants) 

what is the effect/impact of a SNP, which modifies X, on Y?

. EXPLANATION: e.g. characterization of molecular determinants (DNA 
features/instructions) and finding the molecular rules | DNA grammar | cis-
regulatory code

what are the relevant Xs?

>>>> Need interpretable models

objectives



LASSO (Least Absolute Shrinkage and Selection Operator- Tibshirani R. J. of the Royal Statistical
Society. 1996): by penalizing the absolute size of the regression coefficients (l1-norm), the LASSO 
drives the coefficients of irrelevant variables to zero, thus performing automatic variable selection. 

𝑦 𝑠 = 𝑎 +&
!

𝑏𝑖𝑥𝑖, 𝑠 + 𝑒(𝑠)

Many publications: Li et al., PLoS CB 2014 ; Schmidt et al., NAR 2017 ; Bessière, Taha et al., 
PLoS CB 2018 ; Vandel et al., BMC bioinformatics 2019 ; Menichelli et al., PLoS CB 2021 ; 
Romero et al., bioRxiv 2022
…

One solution among many: linear regression

where y(g) is the expression of seq s, xi,s is variable i for seq s, e(s) is the residual error
associated with seq s, a is the intercept and bi is the regression coefficient associated
with variable i. 

linear regression

𝑃(1|𝑠) = 𝑆(𝑎 +&
!

𝑏𝑖𝑥𝑖, 𝑠) logistic regression

P(1|s) is the probability that sequence s belongs to the first class, S is the sigmoid function



No need of pre-defined variables as input == DNA sequence
(one hot-encoded ~ image)
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101bp-long sequence one-hot encoded matrix

STR

STR 
flanking 

sequence
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flanking 

sequence

DNA encoding

data sets

CNN architecture
Convolution filter #1

kernel size: 5x4 ; # filters: 50 ; stride: 1

Convolution filter #2
kernel size: 3x1 ; # filters: 30 ; stride: 1

Convolution filter #3
kernel size: 3x1 ; # filters: 30 ; stride: 1

Batch normalisation

max pooling
pool size: 2

…dense layer #1 (500 neurons)

…dense layer #2 (200 neurons)

classification neuronregression neuron

Training set 50%

Test set 30%

Validation set 20%

STR classes with > 5,000 loci

Training Validation

continuous improvement

trained 
model

performance measure
(Spearman correlation)

Another solution: deep learning (convolutional neural network, CNN)



from Eraslan, G., Avsec, Ž., Gagneur, J. et al. Nat Rev Genet 2019

Convolution Neural Network

ReLU

size = 6

automatic extraction of relevant features from DNA sequence

no linear relationship b/w Y and X



Finding the
molecular rules | DNA grammar | cis-regulatory code

𝑌 = 𝑓(𝐷𝑁𝐴 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒)
𝑅𝑁𝐴 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 | 𝑇𝐹 𝑏𝑖𝑛𝑑𝑖𝑛𝑔 | 𝑒𝑝𝑖𝑔𝑒𝑛𝑒𝑡𝑖𝑐 𝑚𝑎𝑟𝑘𝑠 = 𝑓(𝐷𝑁𝐴 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒)

Whitaker et al., Nature Methods 2015
Alipanahi et al. Nat. Biotechnology 2015
Zhou et al., Nature Methods 2015
Quang and Xie, Nucleic Acids Res. 2016
Kelley et al., Genome Res. 2016
Zhou et al., Nature Genetics 2018
Bessière, Taha et al., PLoS CB 2018
Vandel et al., BMC bioinformatics 2019
Avsec et al., Nature Genetics 2021
Menichelli et al., PLoS CB 2021
Grapotte, Saraswat, Bessière et al., Nature Communications 2021
…

Decoding the DNA grammar

Many regulatory processes are directly predictable by DNA sequence



One example: 

predicting transcription initiation at microsatellites

Grapotte, Saraswat, Bessière et al., Nature Communications 2021



. short repetitive motifs of 1–6 nucleotides

. tandemly repeated

. flanked by unique sequences

https://link.springer.com/referenceworkentry/10.1007%2F978-3-642-16483-5_3731

10

~3% of the human genome

Microsatellite | short tandem repeats (STRs)



CAGE: Cap Analysis of Gene Expression

RNA 5’end (27nt)

Forrest et al., Nature 2014

Grapotte, Saraswat, Bessière et al., Nature Communications 2021

1,048,124 human CAGE peaks in 1,829 libraries
753,303 not assigned to genes (~72%)

89,948 CAGE peaks (~8.6%) initiate at STRs*

11

* 84,555 STRs from HipSTR catalog
Willems et al., Nat. Methods 2017



.

.

.
A
T
G
C
G
T
C
T
T
T
T
T
T
T
A
G
C
T
A
G
.
.
.

encoding

A          C           G        T

input
101bp-long sequence one-hot encoded matrix

STR

STR 
flanking 

sequence

STR 
flanking 

sequence

DNA encoding

data sets

CNN architecture
Convolution filter #1

kernel size: 5x4 ; # filters: 50 ; stride: 1

Convolution filter #2
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continuous improvement
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CNN to predict transcription initiation at STRs

Mathys Grapotte

https://gite.lirmm.fr/ibc/deepSTR

Manu Saraswat
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from Koo & Eddy, PLoS CB 2019

CNN architecture, which is optimized for prediction, influences the representations of 
sequence motifs captured by first layer filters.

Prediction and interpretation require distinct CNN architectures, in particular adapting max-pooling and 
convolutional filter size

Importance of CNN architecture

max-pooling size = 3

max-pooling size = 20



#parameters == 776,580 
(small model)

features used by the model 
not directly interpretable

The black box issue

Black Box issue: a model is accurate but we do 
not know how and which information it uses to 
make the prediction. 

>>> need interpretation methods



from Eraslan, G., Avsec, Ž., Gagneur, J. et al. Nat Rev Genet 2019

Interpreting CNNs:  determining feature importance scores 

Interpretation methods use a black box model and a sequence of interest as the input 
and, then (i) mutate the input and evaluate the consequences on the output 
(perturbation-based)  or (ii) backpropagate the output relative to the input 
(backpropagation-based) 

GOAL: attribute feature importance scores to highlight the parts of a given input that are most 
influential for the model prediction and thereby help to explain why such a prediction was made. 
When DNA is used as input, importance scores highlight sequence motifs.



Example of backpropagation-based method: DeepLIFT

backpropagation approaches propagate an importance signal from an output 
neuron backwards through the layers to the input in one pass and generate a 
saliency map.

DeepLIFT explains the difference in output from some ‘reference’ output in terms of 
the difference of the input from some ‘reference’ input. 

from Shrikumar et al. Arxiv, oct. 2019



top row shows the the original images and their saliency maps and the bottom row shows the perturbed images

Limits of interpretation methods (ii)

from Ghorbani, Abid & Zou, The Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19) 

which features
to choose?

Saliency maps depend on the chosen input



Limits of interpretation methods (i)

. Explainable model - two steps : 

(i) Training step and

(ii) Interpretation step

. In the interpretation step, a subset of sequences is used to explain the model, 
but are they truly representative?

. Besides, how do we know which features are truly important for the 
prediction?

. Need models that are interpretable in the first place 
(Rudin, Nature Machine Intelligence 2019 )

i.e. combine training & interpretation and therefore do not rely on any input for 
interpretation

. Need also to infer features directly from DNA sequence



(2) the coefficients of the regression indicate where the model is expected to find the filter/motif

(1) not a linear model

Modular Neural Networks

(3) the coefficients indicate which module/filter/motif is important

DNA sequence
one-hot encoded matrix

(1) (2)

(3)

1! filter

Mathys Grapotte



Each filter of each module cannot
be combined with another (no link
b/w filters)

one module > one filter > one motif

MNN is not a mere 1-layer CNN 
because filters from different 
modules can have various sizes, a 
flexibility that is not allowed in a 
classical CNN wherein all filters from 
the same layer have the same size.

learning an MNN



STR Class CNN-Model * 
(Spearman)

Modular Network 
(Spearman)

Number of 
filters

T 0.87 0.79 9

AC 0.78 0.72 9

GT 0.78 0.72 8

A 0.73 0.69 7

AG 0.72 0.64 4

AGG 0.57 0.51 5

AAT 0.62 0.61 10

* The CNN-Model contains 110 filters

CNN 776,580 parameters
MNN ~1,000 parameters

CNN vs. MNN



MNN to probe the functional consequences of 
transcription initiating at STRs



Process Gene (Organism) Repeat Motif References
Binding of transcription factors to microsatellite DNA SLC11A1 (human) GT (imperfect) Bayele etal. 2007

ECE-1c (human) CA (imperfect) Taka etal. 2013
TH (human) TACT Li etal. 2012
PIG3 (human) TGYCC Albanese etal. 2001
nadA (N. meningitidis) TAAA Contente etal. 2002, Martin etal. 2005

Spacing between promoter elements GP91-PHOX (human) CA Uhlemann etal. 2004
IGF1 (human) CA Chen etal. 2016

Long-range interactions Intergenic (Drosophila & human)GATA Kumar etal. 2013
Transcription start site selection HO-1 (human) AC Kramer etal. 2013

ECE-1c (human) CA (imperfect) Li etal. 2012
Transcription end site selection ASS1 (human) GT Tseng etal. 2013
RNA half-life FGF9 (human) TG (imperfect) Chen etal. 2007
Alternative splicing APOA2 (human) GT Cuppens etal. 1998

CFTR (human) TG Hefferon etal. 2004
eNOS (human) CA Hui etal. 2003
Various (human) CA Hui etal. 2005

Nucleosome packaging HIS3 (S. cerevisiae) A Iyer and Struhl 1995
CSF1 (human) TG Liu etal. 2001, Liu etal. 2006
CYC1 (S. cerevsiae) CG Wong etal. 2007
Genomic (human) BAA Zhao etal. 2015

Histone modification Genomic (human) Various Gymrek etal. 2016
Methylation Genomic (human & chimpanzee)CG Fukuda etal. 2013

Genomic (human) CG Quilez etal. 2016
Noncoding RNA function Genomic (Drosophila) AAGAG Pathak etal. 2013

Genomic (mammals) GAA Zheng etal. 2010
Meiotic recombination ARG4 (S. cerevisiae)HIS4 (S. cerevisiae)TGCCGNN Gendrel etal. 2000, Kirkpatrick etal. 1999

Genomic (A. thaliana) CCT & CCN Choi etal. 2013, Shilo etal. 2015

Bagshaw, Genome Biol Evol 2017 24

STRs are implicated in various regulatory functions



from Boulay et al., Genes & Dev. 2018

A673 & SKNMC: 2 Ewing Sarcoma cells*
MRC5: fibroblasts – negative control (no EWS_FLI)

*not tested in FANTOM5
but transcription initiation detected at several GGAA STRs in non-sarcoma cells

. Transcription inhibition is feasible by targeting immediately adjacent unique genomic
sequences with CRISPR/dCas9-KRAB

. Silencing of a single EWS-FLI1-bound GGAA repeat enhancer 470 kb from the SOX2 locus
is sufficient to impair the growth of Ewing sarcoma xenografts.

25

EWS-FLI1-bound GGAA microsatellite repeats are 
transcriptionally active 
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impact of SNVs on CNN predictions

CAGE signal at STRs associated with ClinVar variants - one-way ANOVA test p-value p-value = 2.5e-27

distribution of ClinVar SNVs around STRs
b

CAGE signal at STRs associated or not with ClinVar variants

CAGE signal
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a c

d

impact of SNVs on CNN predictions

CAGE signal at STRs associated with ClinVar variants - one-way ANOVA test p-value p-value = 2.5e-27

distribution of ClinVar SNVs around STRs
b

CAGE signal at STRs associated or not with ClinVar variants

CAGE signal

de
ns

ity

pathogenic variants are associated with STRs
initiating transcription
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Y ~ X in a population

STR dosage (length sum)
X

gene expression
Y

STR gene

H0: bg = 0
H1: bg ≠ 0

𝑌 = 𝛽0+ 𝛽𝑔𝑋 + 𝜀 {

For all gene/STR pairs:

27

STR-mediated long-range regulations
expression STR (eSTR) Gymrek et al., Nature Genetics 2016



a b
pairwise 

classification

regression
accuracies of models built only on STR flanking sequences

STR
 class used for testing

STR class used for training

c

e

d

a b
pairwise 

classification

regression
accuracies of models built only on STR flanking sequences

STR
 class used for testing

STR class used for training

c

e

d

28

Model accuracies using as input only flanking sequences



from Chen et al., Scientific Reports, 2016

‘adjacent SNPs located outside the STR were required for the STR to function as eSTR.’

29

eSTR require adjacent SNPs

Functional link b/w STR and surrounding sequences

SNPSTR (Mountain et al., Genome Res 2002 ; Agrafioti et al., Nucleic Acids Res. 2007)



50kb around STRs

30

STR length imputation with surrounding SNPs (Saini et al., Nat. Comm 2018)

from Saini et al., Nat. Comm 2018



31

Taking into account STR surrounding sequences and SNPs located 
within these sequences appears instrumental to better understand 

regulations orchestrated by STRs 
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STR score
X

gene expression
Y

STR genex x
SNP SNP

Combination of SNPs and haplotypes

For each STR, 2 scores (2 alleles)
=> Multivariate regression 

32

STR-surrounding SNPs (i.e. SNPSTR)
should be taken into account for eSTR computation

no CAGE data 
(i.e. no information on Tx at STRs)



D. Garrido-Martin & R. Guigo (CRG, Barcelona)



115,608 (STR, gene) pairs tested – 17 tissues as in Fotsing et al., Nature Genetics 2019

14,340 significant associations 
between 8,458 STRs and 11,060 genes in at least one tissue (FDR = 0.05)

enrichment in previously published
eQTLs (GTEx, Nature 2017)

sQTLs (Garrido-Martin et al, Nature Communications, 2021)
eSTRs (Fotsing et al., Nature Genetics 2019)

positive and negative impact on gene expression



Collaboration with Sanofi

~2.5k participants ~500k participants

STR score
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Clinical trait ~ STR score

35

Likewise in Genome Wide Association Study (GWAS/PheWAS)



combine both approaches to verify that STR associated to specific
traits regulate genes implicated in those traits. 

STR gene

Phenotype

? known (used as benchmark)
unknown

eSTR

GWAS

36

better interpret > 30,000 variants located around STRs
and often in non-coding regions



37

At the molecular DNA level:
exploiting the interpretability nature of MNNs



k=10

Filter interpretation

Consider (T)n model (9 modules/filters – combined through a linear regression)

Each (T)n eSTR is associated with a vector of 9 values corresponding to the regression coefficients

Hierarchical clustering



Correlation between MNN scores and expression of the gene target

For each cluster, find relevant motifs/filters and compare w/ existing motifs (JASPAR)

Experimental validation (S. Spicuglia, Marseille)



. ML is able to model gene expression and various genomic regulations

. DNA sequence per se is key and a lot of information/instructions remain to be
discovered – we have not finished reading the book…

. Need fully interpretable models in order to provide hypotheses than can be
experimentally validated and to generate novel biological knowledge

. Need of specific architecture and/or specific benchmarks (i.e. not MNIST*) 
not necessarily derived from image or natural language processing

* We know what’s an ‘8’, we don’t know the DNA grammar yet
(synthetic sequences and MPRA - ?)

Take-home messages



genomic-specific benchmark for ML

𝑌~𝑋
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Y: reporter gene expression ; binding of a TF ; …

S. Spicuglia
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In TF-MoDISco (which first uses DeepLift), a 
clustering method on a large dataset used as 
the input is used. 

While being more robust, TF-MoDISco still uses 
only a subset of the sequence used for 
learning

One possible solution: TF-MoDISco
Shrikumar et al. Arxiv, oct. 2020



45

Functional link b/w STR and surrounding sequences

SNPSTR (Mountain et al., Genome Res 2002 ; Agrafioti et al., Nucleic Acids Res. 2007)

CNN-based pairwise classification of STRs using only
STR flanking sequences



SNPs linked tightly to STR polymorphisms. 

Such combinations satisfy the following three requirements: 
(1) close physical linkage of two or more polymorphisms; 
(2) significant difference in mutation rate between polymorphisms; and, 
(3) potential for a large number of independent compound haplotypic systems.

SNP mutation rate ~ 2.0–2.5 × 10−8 mutations per nucleotide position per generation
STR mutation rate ∼1.5 × 10−3 per STR per generation

‘This combination of co-inherited markers evolving at different rates may offer the 
possibility of gaining better resolved insights into population genetic processes
compared to when these different marker types are used separately’
(Agrafioti et al., Nucleic Acids Res. 2007) 46

SNPSTR (Mountain et al., Genome Res 2002)



SNPSTR DB [Agrafioti et al., Nucleic Acids Res. 2007]
arbitrarily consider SNPs located 250bp apart of STRs (so each SNPSTR can be
considered a small haplotype with no recombination occurring between the two
individual markers)

Remember that, to predict transcription initiation, 50bp around STR 3’end (as
defined by the tx strand) are sufficient - Grapotte et al., Nat. Comm. 2021

Supplementary Figure 8 – Impact of the length of the sequences used as input of the CNN models.
Spearman (orange) and Pearson (blue) correlations (y-axis)were computed between the predicted and the
observed CAGE signal. Different sequence size were tested as input (50bp, 100bp, 150bp and 200bp).
The size is indicated as multiples of 50bp on the x-axis. Only 6 representative STR classes are shown.

7
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T2T consortium, Science 376, 44-53 1 April 2022

https://www.ncbi.nlm.nih.gov/assembly/GCA_009914755.4

GRCH38 T2T-CHM13 difference

The complete sequence of a human genome


